

# 5

# INTRODUCTION TO EUCLID'S GEOMETRY

## EXERCISE 5.1

**Q.1.** Which of the following statements are true and which are false? Give reasons for your answers.

- (i) Only one line can pass through a single point.
- (ii) There are an infinite number of lines which pass through two distinct points.
- (iii) A terminated line can be produced indefinitely on both the sides.
- (iv) If two circles are equal, then their radii are equal.
- (v) In the Fig., if  $AB = PQ$  and  $PQ = XY$ , then  $AB = XY$ .



**Ans.** (i) False. Infinitely many lines can pass through a point in different directions.

(ii) False. Through two distinct points only one line can pass.

(iii) True. A terminated line or line segment can be produced indefinitely on both sides to give a line.

(iv) True. Two circles of equal area (i.e., equal circles) will have the same radius from the relation  $\text{area} = \pi r^2$ .

(v) True. From the axiom that if two things are, separately, equal to a third thing, then, they are equal to each other.

**Q.2.** Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them?

- (i) parallel lines      (ii) perpendicular lines      (iii) line segment
- (iv) radius of a circle      (v) square

**Ans.** (i) Parallel lines : Two straight lines which have no point in common are said to be parallel to each other.

'Point' and 'straight line' will have to be defined first. 'Point' and 'straight line' as defined in Euclid's text are :

A point is that which has no part.

A line is breathless length and a straight line is a line which lies evenly with the points on itself.

(ii) Perpendicular lines : If one among two parallel lines is turned by  $90^\circ$ , the two lines become perpendicular to each other. Parallel lines has been defined before, 'rotation through  $90^\circ$ ' needs further defining. Rotation may be assumed as an intuition therefore, can not be used.

(iii) Line segment : A line with two end points is a line segment.

'Line' and 'point' have been defined before.

(iv) Radius of a circle : The line segment with one end point at the centre and the other at any point on the circle.

'Centre' may be defined (assuming inside) as a point inside the circle which is at the same distance from all points on the circle.

(v) Square : A quadrilateral with all sides equal and all angles right angles is a square.

A quadrilateral is a figure with four sides.

'Figure', 'side' and 'angle' may be assumed known.

**Q.3.** Consider two 'postulates' given below :

(i) Given any two distinct points  $A$  and  $B$ , there exists a third point  $C$  which is in between  $A$  and  $B$ .

(ii) There exist at least three points that are not on the same line.

Do these postulates contain any undefined terms? Are these postulates consistent? Do they follow from Euclid's postulates? Explain.

**Ans.** In postulate (i) 'in between  $A$  and  $B$ ' remains an undefined term which appeals to our geometric intuition.

The postulates are consistent. They do not contradict each other. Both of these postulates do not follow from Euclid's postulates. However, they follow from the axiom given below.

Given two distinct points, there is a unique line that passes through them.

(i) Let  $\overleftrightarrow{AB}$  be a straight line.

There are an infinite number of points composing this line. Choose any except the two end-points  $A$  and  $B$ . This point lies between  $A$  and  $B$ .

(ii) If there are only two points, they can always be connected by a straight line (From Euclid's postulate). Therefore, there have to be at least three points for one of them not to fall on the straight line between the other two.

**Q.4.** If a point  $C$  lies between two points  $A$  and  $B$  such that  $AC = BC$ , then prove

that  $AC = \frac{1}{2}AB$ . Explain by drawing the figure.

**Ans.** 

Also  $AC + AC = BC + AC$ . (Equals are added to equals)

$BC + AC$  coincides with  $AB$

$$\Rightarrow 2AC = AB$$

$$\Rightarrow AC = \frac{1}{2}AB.$$

**Q.5.** In Question 4, point  $C$  is called a mid-point of line segment  $AB$ . Prove that every line segment has one and only one mid-point.

**Ans.** Let there be two such mid points  $C$  and  $D$ . Then from above theorem

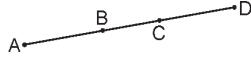
$$AC = \frac{1}{2}AB$$

$$\text{and } AD = \frac{1}{2}AB$$

$$\therefore AC = AD$$

But this is possible only if  $D$  coincides with  $C$ . Therefore,  $C$  is the unique mid-point. **Proved.**

**Q.6.** In Fig., if  $AC = BD$ , then prove that  $AB = CD$ .



**Ans.** Given :  $AC = BD$

To prove  $AB = CD$ .

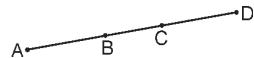
$$AC = AB + BC$$

$$BD = BC + CD$$

As  $AC = BD$  (given)

$$AB + BC = BC + CD$$

$\therefore AB = CD$ . **Proved.**



**Q.7.** Why is Axiom 5, in the list of Euclid's axioms, considered a 'universal truth'? (Note that the question is not about the fifth postulate.)

**Ans.** **Axiom 5 :** 'Whole is always greater than its part.'

This is a 'universal truth' because part is included in the whole and therefore can never be greater than the whole in magnitude.

### EXERCISE 5.2

**Q.1.** How would you rewrite Euclid's fifth postulate so that it would be easier to understand?

**Ans.** When two lines are cut by a third line, such that the sum of interior angles is less than  $180^\circ$  on one side then the first two lines intersect on the same side.

**Q.2.** Does Euclid's fifth postulate imply the existence of parallel lines? Explain.

**Ans.** It may be argued that Euclid's fifth postulate recognises the existence of parallel lines. If the sum of interior angles is  $180^\circ$  on both sides of the transversal then the lines will not intersect on any side (condition for intersection being that the sum of interior angles on that side should be less than  $180^\circ$ ). So if two lines never intersect, then they are parallel.

# 6

# LINES AND ANGLES

## EXERCISE 6.1

**Q.1.** In the figure lines AB and CD intersect at O. If  $\angle AOC + \angle BOE = 70^\circ$  and  $\angle BOD = 40^\circ$ , find  $\angle BOE$  and reflex  $\angle COE$ .

**Sol.** Lines AB and CD intersect at O.

$$\angle AOC + \angle BOE = 70^\circ \quad (\text{Given})$$

$$\angle BOD = 40^\circ \quad (\text{Given})$$

$$\text{Since, } \angle AOC = \angle BOD$$

(Vertically opposite angles)

$$\text{Therefore, } \angle AOC = 40^\circ \quad [\text{From (2)}]$$

$$\text{and } 40^\circ + \angle BOE = 70^\circ \quad [\text{From (1)}]$$

$$\Rightarrow \angle BOE = 70^\circ - 40^\circ = 30^\circ$$

$$\text{Also, } \angle AOC + \angle BOE + \angle COE = 180^\circ \quad (\because \text{AOB is a straight line})$$

$$\Rightarrow 70^\circ + \angle COE = 180^\circ \quad [\text{From (1)}]$$

$$\Rightarrow \angle COE = 180^\circ - 70^\circ = 110^\circ$$

$$\text{Now, reflex } \angle COE = 360^\circ - 110^\circ = 250^\circ$$

Hence,  $\angle BOE = 30^\circ$  and reflex  $\angle COE = 250^\circ$  Ans.

**Q.2.** In the figure, lines XY and MN intersect at O. If  $\angle POY = 90^\circ$  and  $a : b = 2 : 3$ , find c.

**Sol.** In the figure, lines XY and MN intersect at O and  $\angle POY = 90^\circ$ .

$$\text{Also, given } a : b = 2 : 3$$

$$\text{Let } a = 2x \text{ and } b = 3x.$$

$$\text{Since, } \angle XOM + \angle POM + \angle POY = 180^\circ \quad (\text{Linear pair axiom})$$

$$\Rightarrow 3x + 2x + 90^\circ = 180^\circ$$

$$\Rightarrow 5x = 180^\circ - 90^\circ$$

$$\Rightarrow x = \frac{90^\circ}{5} = 18^\circ$$

$$\therefore \angle XOM = b = 3x = 3 \times 18^\circ = 54^\circ$$

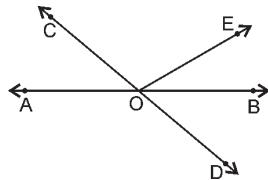
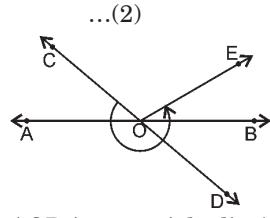
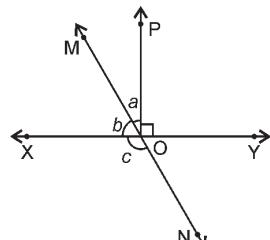
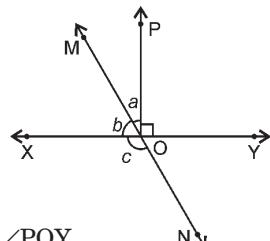
$$\text{and } \angle POM = a = 2x = 2 \times 18^\circ = 36^\circ$$

$$\text{Now, } \angle XON = c = \angle MOY = \angle POM + \angle POY$$

(Vertically opposite angles)

$$= 36^\circ + 90^\circ = 126^\circ$$

Hence,  $c = 126^\circ$  Ans.



**Q.3.** In the figure,  $\angle PQR = \angle PRQ$ , then prove that  $\angle PQS = \angle PRT$ .

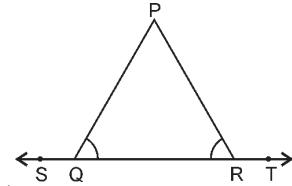
**Sol.**  $\angle PQS + \angle PQR = 180^\circ$  ... (1)  
 (Linear pair axiom)

$\angle PRQ + \angle PRT = 180^\circ$  ... (2)  
 (Linear pair axiom)

But,  $\angle PQR = \angle PRQ$  (Given)

$\therefore$  From (1) and (2)

$\angle PQS = \angle PRT$  **Proved.**



**Q.4.** In the figure, if  $x + y = w + z$ , then prove that AOB is a line.

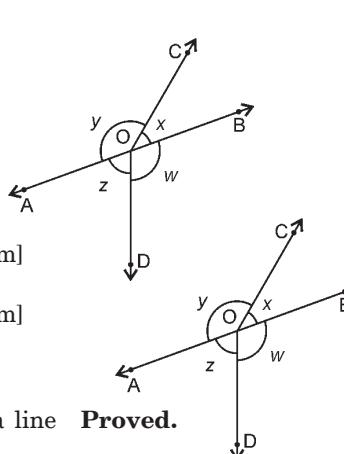
**Sol.** Assume AOB is a line.

Therefore,  $x + y = 180^\circ$  ... (1)  
 [Linear pair axiom]  
 $w + z = 180^\circ$  ... (2)  
 [Linear pair axiom]

Now, from (1) and (2)

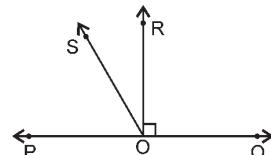
$$x + y = w + z$$

Hence, our assumption is correct, AOB is a line **Proved.**



**Q.5.** In the figure,  $POQ$  is a line. Ray  $OR$  is perpendicular to line  $PQ$ .  $OS$  is another ray lying between rays  $OP$  and  $OR$ . Prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$$



**Sol.**  $\angle ROS = \angle ROP - \angle POS$  ... (1)

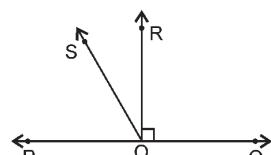
and  $\angle ROS = \angle QOS - \angle QOR$  ... (2)

Adding (1) and (2),

$$\begin{aligned} \angle ROS + \angle ROS &= \angle QOS - \angle QOR \\ &\quad + \angle ROP - \angle POS \end{aligned}$$

$$\Rightarrow 2\angle ROS = \angle QOS - \angle POS \quad (\because \angle QOR = \angle ROP = 90^\circ)$$

$$\Rightarrow \angle ROS = \frac{1}{2} (\angle QOS - \angle POS) \quad \text{Proved.}$$



**Q.6.** It is given that  $\angle XYZ = 64^\circ$  and  $XY$  is produced to point  $P$ . Draw a figure from the given information. If ray  $YQ$  bisects  $\angle ZYP$ , find  $\angle XYQ$  and reflex  $\angle QYP$ .

**Sol.** From figure,

$$\angle XYZ = 64^\circ \quad (\text{Given})$$

$$\text{Now, } \angle ZYP + \angle XYZ = 180^\circ \quad (\text{Linear pair axiom})$$

$$\Rightarrow \angle ZYP + 64^\circ = 180^\circ$$

$$\Rightarrow \angle ZYP = 180^\circ - 64^\circ = 116^\circ$$

Also, given that ray  $YQ$  bisects  $\angle ZYP$ .

$$\text{But, } \angle ZYP = \angle QYP \quad \angle QYZ = 116^\circ$$

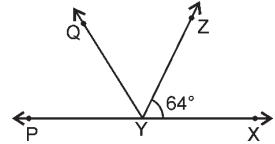
$$\text{Therefore, } \angle QYP = 58^\circ \text{ and } \angle QYZ = 58^\circ$$

$$\text{Also, } \angle XYQ = \angle XYZ + \angle QYZ$$

$$\Rightarrow \angle XYQ = 64^\circ + 58^\circ = 122^\circ$$

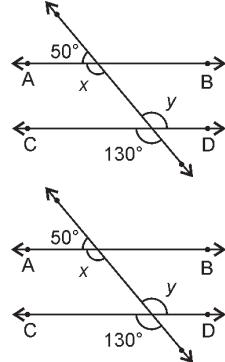
$$\text{and reflex } \angle QYP = 360^\circ - \angle QYP = 360^\circ - 58^\circ = 302^\circ \quad (\because \angle QYP = 58^\circ)$$

Hence,  $\angle XYQ = 122^\circ$  and reflex  $\angle QYP = 302^\circ$  Ans.



### EXERCISE 6.2

**Q.1.** In the figure, find the values of  $x$  and  $y$  and then show that  $AB \parallel CD$ .



**Sol.** In the given figure, a transversal intersects two lines  $AB$  and  $CD$  such that

$$x + 50^\circ = 180^\circ \quad (\text{Linear pair axiom})$$

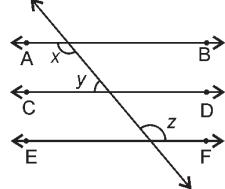
$$\Rightarrow x = 180^\circ - 50^\circ \\ = 130^\circ$$

$$y = 130^\circ \quad (\text{Vertically opposite angles})$$

Therefore,  $\angle x = \angle y = 130^\circ$  (Alternate angles)

$\therefore AB \parallel CD$  (Converse of alternate angles axiom)

**Proved.**



**Q.2.** In the figure, if  $AB \parallel CD$ ,  $CD \parallel EF$  and  $y : z = 3 : 7$ , find  $x$ .

**Sol.** In the given figure,  $AB \parallel CD$ ,  $CD \parallel EF$  and  $y : z = 3 : 7$ .

Let  $y = 3a$  and  $z = 7a$

$\angle DHI = y$  (vertically opposite angles)

$\angle DHI + \angle FIH = 180^\circ$

(Interior angles on the same side of the transversal)

$$\Rightarrow y + z = 180^\circ$$

$$\Rightarrow 3a + 7a = 180^\circ$$

$$\Rightarrow 10a = 180^\circ \Rightarrow a = 18^\circ$$

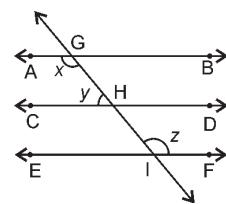
$$\therefore y = 3 \times 18^\circ = 54^\circ \text{ and } z = 18^\circ \times 7 = 126^\circ$$

$$\text{Also, } x + y = 180^\circ$$

$$\Rightarrow x + 54^\circ = 180^\circ$$

$$\therefore x = 180^\circ - 54^\circ = 126^\circ$$

Hence,  $x = 126^\circ$  Ans.



**Q.3.** In the figure, if  $AB \parallel CD$ ,  $EF \perp CD$  and  $\angle GED = 126^\circ$ . Find  $\angle AGE$ ,  $\angle GEF$  and  $\angle FGE$ .

**Sol.** In the given figure,  $AB \parallel CD$ ,  $EF \perp CD$  and  $\angle GED = 126^\circ$

$$\angle AGE = \angle LGF \text{ (Alternate angle)}$$

$$\therefore \angle AGE = 126^\circ$$

$$\text{Now, } \angle GEF = \angle GED - \angle DEF$$

$$= 126^\circ - 90^\circ = 36^\circ \quad (\because \angle DEF = 90^\circ)$$

Also,  $\angle AGE + \angle FGE = 180^\circ$  (Linear pair axiom)

$$\Rightarrow 126^\circ + \angle FGE = 180^\circ$$

$$\Rightarrow \angle FGE = 180^\circ - 126^\circ = 54^\circ$$

**Q.4.** In the figure, if  $PQ \parallel ST$ ,  $\angle PQR = 110^\circ$  and  $\angle RST = 130^\circ$ , find  $\angle QRS$ .

**Sol.** Extend  $PQ$  to  $Y$  and draw  $LM \parallel ST$  through  $R$ .

$$\angle TSX = \angle QXS$$

[Alternate angles]

$$\Rightarrow \angle QXS = 130^\circ$$

$$\angle QXS + \angle RXQ = 180^\circ$$

[Linear pair axiom]

$$\Rightarrow \angle RXQ = 180^\circ - 130^\circ = 50^\circ \quad \dots(1)$$

$$\angle PQR = \angle QRM \quad \text{[Alternate angles]}$$

$$\Rightarrow \angle QRM = 110^\circ \quad \dots(2)$$

$$\angle RXQ = \angle XRM \quad \text{[Alternate angles]}$$

$$\Rightarrow \angle XRM = 50^\circ \quad \text{[By (1)]}$$

$$\begin{aligned} \angle QRS &= \angle QRM - \angle XRM \\ &= 110^\circ - 50^\circ = 60^\circ \quad \text{Ans.} \end{aligned}$$

**Q.5.** In the figure, if  $AB \parallel CD$ ,  $\angle APQ = 50^\circ$  and  $\angle PRD = 127^\circ$ , find  $x$  and  $y$ .

**Sol.** In the given figure,  $AB \parallel CD$ ,  $\angle APQ = 50^\circ$  and  $\angle PRD = 127^\circ$

$$\angle APQ + \angle PQC = 180^\circ$$

[Pair of consecutive interior angles are supplementary]

$$\Rightarrow 50^\circ + \angle PQC = 180^\circ$$

$$\Rightarrow \angle PQC = 180^\circ - 50^\circ = 130^\circ$$

$$\text{Now, } \angle PQC + \angle PQR = 180^\circ \quad \text{[Linear pair axiom]}$$

$$\Rightarrow 130^\circ + x = 180^\circ$$

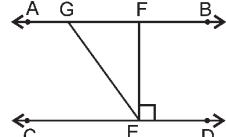
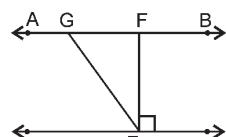
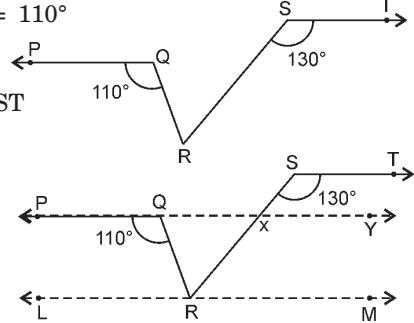
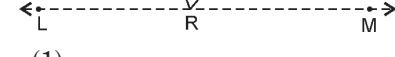
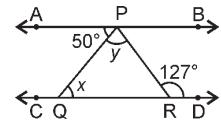
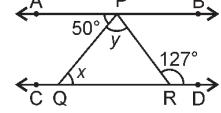
$$\Rightarrow x = 180^\circ - 130^\circ = 50^\circ$$

Also,  $x + y = 127^\circ$  [Exterior angle of a triangle is equal to the sum of the two interior opposite angles]

$$\Rightarrow 50^\circ + y = 127^\circ$$

$$\Rightarrow y = 127^\circ - 50^\circ = 77^\circ$$

Hence,  $x = 50^\circ$  and  $y = 77^\circ$  Ans.



**Q.6.** In the figure,  $PQ$  and  $RS$  are two mirrors placed parallel to each other. An incident ray  $AB$  strikes the mirror  $PQ$  at  $B$ , the reflected ray moves along the path  $BC$  and strikes the mirror  $RS$  at  $C$  and again reflects back along  $CD$ . Prove that  $AB \parallel CD$ .

**Sol.** At point  $B$ , draw  $BE \perp PQ$  and at point  $C$ , draw  $CF \perp RS$ .

$$\angle 1 = \angle 2 \quad \dots \text{(i)}$$

(Angle of incidence is equal to angle of reflection)

$$\angle 3 = \angle 4 \quad \dots \text{(ii)}$$

Also,  $\angle 2 = \angle 3 \quad \dots \text{(iii)}$  [Alternate angles]

$\Rightarrow \angle 1 = \angle 4 \quad \dots \text{(iv)}$  [From (i), (ii), and (iii)]

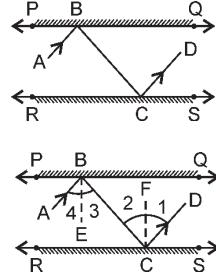
$$\Rightarrow 2\angle 1 = 2\angle 4$$

$$\Rightarrow \angle 1 + \angle 1 = \angle 4 + \angle 4$$

$$\Rightarrow \angle 1 + \angle 2 = \angle 3 + \angle 4$$

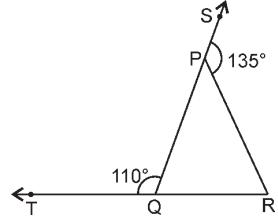
$\Rightarrow \angle BCD = \angle ABC$  [From (i) and (ii)]

Hence,  $AB \parallel CD$ . [Alternate angles are equal] **Proved.**



### EXERCISE 6.3

**Q.1.** In the figure, sides  $QP$  and  $RQ$  of  $\triangle PQR$  are produced to points  $S$  and  $T$  respectively. If  $\angle SPR = 135^\circ$  and  $\angle PQT = 110^\circ$ , find  $\angle PRQ$ .



**Sol.** In the given figure,  $\angle SPR = 135^\circ$  and  $\angle PQT = 110^\circ$ .

$$\angle PQT + \angle PQR = 180^\circ \quad \text{[Linear pair axiom]}$$

$$\Rightarrow 110^\circ + \angle PQR = 180^\circ$$

$$\Rightarrow \angle PQR = 180^\circ - 110^\circ = 70^\circ$$

Also,  $\angle SPR + \angle QPR = 180^\circ \quad \text{[Linear pair axiom]}$

$$\Rightarrow 135^\circ + \angle QPR = 180^\circ$$

$$\Rightarrow \angle QPR = 180^\circ - 135^\circ = 45^\circ$$

Now, in the triangle  $PQR$

$$\angle PQR + \angle PRQ + \angle QPR = 180^\circ$$

[Angle sum property of a triangle]

$$\Rightarrow 70^\circ + \angle PRQ + 45^\circ = 180^\circ$$

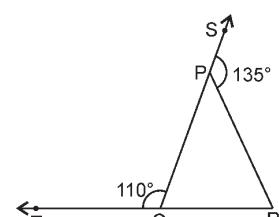
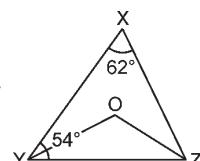
$$\Rightarrow \angle PRQ + 115^\circ = 180^\circ$$

$$\Rightarrow \angle PRQ = 180^\circ - 115^\circ = 65^\circ$$

Hence,  $\angle PRQ = 65^\circ$  **Ans.**

**Q.2.** In the figure,  $\angle X = 62^\circ$ ,  $\angle XYZ = 54^\circ$ . If  $YO$  and  $ZO$  are the bisectors of  $\angle XYZ$  and  $\angle XZY$  respectively of  $\triangle XYZ$ , find  $\angle OZY$  and  $\angle YOZ$ .

**Sol.** In the given figure,  
 $\angle X = 62^\circ$  and  $\angle XYZ = 54^\circ$ .



$$\begin{aligned}
 \angle XYZ + \angle XZY + \angle YXZ &= 180^\circ \quad \dots(i) \\
 &\quad [\text{Angle sum property of a triangle}] \\
 \Rightarrow 54^\circ + \angle XZY + 62^\circ &= 180^\circ \\
 \Rightarrow \angle XZY + 116^\circ &= 180^\circ \\
 \Rightarrow \angle XZY &= 180^\circ - 116^\circ = 64^\circ
 \end{aligned}$$

$$\begin{aligned}
 \text{Now, } \angle OZY &= \frac{1}{2} \times \angle XZY \quad [\because \text{ZO is bisector of } \angle XZY] \\
 &= \frac{1}{2} \times 64^\circ = 32^\circ
 \end{aligned}$$

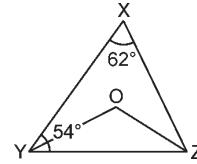
$$\text{Similarly, } \angle OYZ = \frac{1}{2} \times 54^\circ = 27^\circ$$

Now, in  $\triangle OYZ$ , we have

$$\begin{aligned}
 \angle OYZ + \angle OZY + \angle YOZ &= 180^\circ \quad [\text{Angle sum property of a triangle}] \\
 \Rightarrow 27^\circ + 32^\circ + \angle YOZ &= 180^\circ \\
 \Rightarrow \angle YOZ &= 180^\circ - 59^\circ = 121^\circ
 \end{aligned}$$

Hence,  $\angle OZY = 32^\circ$  and  $\angle YOZ = 121^\circ$  Ans.

**Q.3.** In the figure, if  $AB \parallel DE$ ,  $\angle BAC = 35^\circ$  and  $\angle CDE = 53^\circ$ , find  $\angle DCE$ .



**Sol.** In the given figure

$$\begin{aligned}
 \angle BAC &= \angle CED \\
 &\quad [\text{Alternate angles}] \\
 \Rightarrow \angle CED &= 35^\circ \\
 \text{In } \triangle CDE, \\
 \angle CDE + \angle DCE + \angle CED &= 180^\circ \quad [\text{Angle sum property of a triangle}] \\
 \Rightarrow 53^\circ + \angle DCE + 35^\circ &= 180^\circ \\
 \Rightarrow \angle DCE + 88^\circ &= 180^\circ \\
 \Rightarrow \angle DCE &= 180^\circ - 88^\circ = 92^\circ
 \end{aligned}$$

Hence,  $\angle DCE = 92^\circ$  Ans.

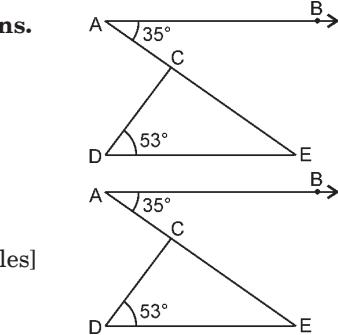
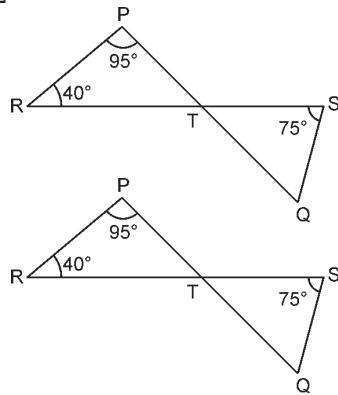
**Q.4.** In the figure, if lines  $PQ$  and  $RS$  intersect at point  $T$ , such that  $\angle PRT = 40^\circ$ ,  $\angle RPT = 95^\circ$  and  $\angle TSQ = 75^\circ$ , find  $\angle STQ$ .

**Sol.** In the given figure, lines  $PQ$  and  $RS$  intersect at point  $T$ , such that  $\angle PRT = 40^\circ$ ,  $\angle RPT = 95^\circ$  and  $\angle TSQ = 75^\circ$ .

In  $\triangle PRT$

$$\begin{aligned}
 \angle PRT + \angle RPT + \angle PTR &= 180^\circ \\
 &\quad [\text{Angle sum property of a triangle}] \\
 \Rightarrow 40^\circ + 95^\circ + \angle PTR &= 180^\circ \\
 \Rightarrow 135^\circ + \angle PTR &= 180^\circ \\
 \Rightarrow \angle PTR &= 180^\circ - 135^\circ = 45^\circ
 \end{aligned}$$

$$\begin{aligned}
 \text{Also, } \angle PTR &= \angle STQ \quad [\text{Vertical opposite angles}] \\
 \therefore \angle STQ &= 45^\circ
 \end{aligned}$$



Now, in  $\triangle STQ$ ,

$$\begin{aligned}\angle STQ + \angle TSQ + \angle SQT &= 180^\circ && \text{[Angle sum property of a triangle]} \\ \Rightarrow 45^\circ + 75^\circ + \angle SQT &= 180^\circ \\ \Rightarrow 120^\circ + \angle SQT &= 180^\circ \\ \Rightarrow \angle SQT &= 180^\circ - 120^\circ = 60^\circ\end{aligned}$$

Hence,  $\angle SQT = 60^\circ$  **Ans.**

**Q.5.** In the figure, if  $PT \perp PS$ ,  $PQ \parallel SR$ ,  $\angle SQR = 28^\circ$  and  $\angle QRT = 65^\circ$ , then find the values of  $x$  and  $y$ .

**Sol.** In the given figure, lines  $PQ \perp PS$ ,  $PQ \parallel SR$ ,  $\angle SQR = 28^\circ$  and  $\angle QRT = 65^\circ$

$$\angle PQR = \angle QRT \quad \text{[Alternate angles]}$$

$$\Rightarrow x + 28^\circ = 65^\circ$$

$$\Rightarrow x = 65^\circ - 28^\circ = 37^\circ$$

In  $\triangle PQS$ ,

$$\angle SPQ + \angle PQS + \angle QSP = 180^\circ \quad \text{[Angle sum property of a triangle]}$$

$$\Rightarrow 90^\circ + 37^\circ + y = 180^\circ$$

$\because PQ \perp PS$ ,  $\angle PQS = x = 37^\circ$  and  $\angle QSP = y$ )

$$\Rightarrow 127^\circ + y = 180^\circ$$

$$\Rightarrow y = 180^\circ - 127^\circ = 53^\circ$$

Hence,  $x = 37^\circ$  and  $y = 53^\circ$  **Ans.**

**Q.6.** In the figure, the side  $QR$  of  $\triangle PQR$  is produced to a point  $S$ . If the bisectors of  $\angle PQR$  and  $\angle PRS$  meet at point  $T$ , then prove that  $\angle QTR = \frac{1}{2} \angle QPR$ .

**Sol.** Exterior  $\angle PRS = \angle PQR + \angle QPR$

[Exterior angle property]

$$\text{Therefore, } \frac{1}{2} \angle PRS = \frac{1}{2} \angle PQR + \frac{1}{2} \angle QPR$$

$$\Rightarrow \angle TRS = \angle TQR + \frac{1}{2} \angle QPR$$

But in  $\triangle QTR$ ,

$$\text{Exterior } \angle TRS = \angle TQR + \angle QTR$$

[Exterior angles property]

Therefore, from (i) and (ii)

$$\angle TQR + \angle QTR = \angle TQR + \frac{1}{2} \angle QPR$$

$$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR \quad \text{Proved.}$$

